R&D: Scaling Logical Density of DNA Storage with Enzymatically-Ligated Composite Motifs
Introducing direct oligonucleotide sequencing nanopore-based technique to sequence oligos without assembly and amplification
This is a Press Release edited by StorageNewsletter.com on May 30, 2023 at 2:00 pmBioRxiv ihas published an article written by Yiqing Yan, Data Science Department, EURECOM, Biot, France, Nimesh Pinnamaneni, Sachin Chalapati, Conor Crosbie, Helixworks Technologies, Cork, Ireland, and Raja Appuswamy, Data Science Department, EURECOM, Biot, France.
Abstract: “DNA is a promising candidate for long-term data storage due to its high density and endurance. The key challenge in DNA storage today is the cost of synthesis. In this work, we propose composite motifs, a frame-work that uses a mixture of prefabricated motifs as building blocks to reduce synthesis cost by scaling logical density. To write data, we introduce Bridge Oligonucleotide Assembly, an enzymatic ligation technique for synthesizing oligos based on composite motifs. To sequence data, we introduce Direct Oligonucleotide Sequencing, a nanopore-based technique to sequence oligos without assembly and amplification. To decode data, we introduce Motif-Search, a novel consensus caller that provides accurate reconstruction despite synthesis and sequencing errors. Using the proposed methods, we present an end-to-end experiment where we store the text ‘HelloWorld’ at a logical density of 84 bits/cycle (14–42× improvement over state-of-the-art.)“